
1 Con�dence Intervals for Mean Value Parame-

ters

For complete separation example of Agresti (2013, Section 6.5.1), we need con-
�dence intervals. The theory in Geyer (2009) says a 100(1 − α)% con�dence
region for the parameter is the set of all parameter values that put at least
probability α on the observed data vector. This is valid only for the �complete
separation� case. See Geyer (2009) and Eck and Geyer (submitted) for when
�complete separation� does not hold.

The probability in question is

n∏
i=1

pyii (1− pi)1−yi

but the computer does not like 00 so we change this to∏
i∈N
yi=1

pi

∏
i∈N
yi=0

1− pi

where N is the index set for y and θ, N = {1, . . . , n}. To avoid under�ow, we
take logs. ∑

i∈N
yi=1

log(pi)

+

∑
i∈N
yi=0

log(1− pi)

 (1)

We want to consider this a function of the submodel parameter β (called
�coe�cients� by R). The relation is

θ =Mβ

where M is the model matrix, and

p = logit−1(θ)

where this inverse logit function operates componentwise

pi =
eθi

1 + eθi
=

1

1 + e−θi

1− pi =
1

1 + eθi
=

e−θi

1 + e−θi

for all i. Taking logs gives

log(pi) = θi − log(1 + eθi) = − log(1 + e−θi)

log(1− pi) = − log(1 + eθi) = −θi − log(1 + e−θi)

1

We want to maximize and minimize components of p over the region where
(1) is at least log(α). Actually, it may be more computationally stable to max-
imize and minimize components of θ over the same region. Since p is a compo-
nentwise monotone function of θ, both amount to the same thing.

For any quantity Q we have the chain rule

∂Q

∂βj
=

n∑
i=1

∂Q

∂θi

∂θi
∂βj

=

n∑
i=1

∂Q

∂θi
mij

where mij are the components of the model matrix M . So it su�ces to worry
about derivatives with respect to the θ's.

First

∂pi
∂θi

= pi(1− pi)

and ∂pi/∂θj = 0 for i 6= j.
Let g(β) denote the value of (1). Then in case yi = 1 we have

∂g(β)

∂θi
=
∂ log(pi)

∂θi
= 1− pi

and in case yi = 0 we have

∂g(β)

∂θi
=
∂ log(1− pi)

∂θi
= −pi

Make the data.

x <- seq(10, 90, 10)

x <- x[x != 50]

y <- as.numeric(x > 50)

Try to �t the data.

gout <- glm(y ~ x, family = binomial, x = TRUE)

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(gout)

##

Call:

glm(formula = y ~ x, family = binomial, x = TRUE)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-1.045e-05 -2.110e-08 0.000e+00 2.110e-08 1.045e-05

2

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -118.158 296046.187 0 1

x 2.363 5805.939 0 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 1.1090e+01 on 7 degrees of freedom

Residual deviance: 2.1827e-10 on 6 degrees of freedom

AIC: 4

##

Number of Fisher Scoring iterations: 25

Code up these functions.

modmat <- gout$x

f <- function(beta, k, ...) {

stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

stopifnot(is.numeric(k))

stopifnot(is.finite(k))

stopifnot(length(k) == 1)

stopifnot(as.integer(k) == k)

stopifnot(k %in% 1:nrow(modmat))

theta <- modmat %*% beta

ifelse(y == 1, theta, - theta)[k]

}

df <- function(beta, k, ...) {

stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

stopifnot(is.numeric(k))

stopifnot(is.finite(k))

stopifnot(length(k) == 1)

stopifnot(as.integer(k) == k)

stopifnot(k %in% 1:nrow(modmat))

ifelse(y == 1, 1, -1)[k] * as.vector(modmat[k,])

}

OK. We are ready to test f and df . Let us make up some points at which
to test it.

3

n <- length(x)

p <- length(gout$coefficients)

beta.test <- rep(0, p)

library(numDeriv)

df(beta.test, 1)

[1] -1 -10

grad(f, beta.test, k = 1)

[1] -1 -10

for (i in 1:n)

print(all.equal(df(beta.test, i), grad(f, beta.test, k = i)))

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

for (j in 1:5) {

beta.test <- rnorm(p) * 0.2

for (i in 1:n)

print(all.equal(df(beta.test, i), grad(f, beta.test, k = i)))

}

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

4

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

Seems to be OK. Now for g and dg.

g <- function(beta, alpha, ...) {

stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

stopifnot(is.numeric(alpha))

stopifnot(length(alpha) == 1)

stopifnot(0 < alpha && alpha < 1)

eta <- modmat %*% beta

logp <- ifelse(eta < 0, eta - log1p(exp(eta)), - log1p(exp(- eta)))

logq <- ifelse(eta < 0, - log1p(exp(eta)), - eta - log1p(exp(- eta)))

logpboundary <- ifelse(y == 1, logp, logq)

sum(logpboundary) - log(alpha)

}

dg <- function(beta, alpha, ...) {

stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

stopifnot(is.numeric(alpha))

5

stopifnot(length(alpha) == 1)

stopifnot(0 < alpha && alpha < 1)

theta <- modmat %*% beta

pp <- ifelse(theta < 0, exp(theta) / (1 + exp(theta)),

1 / (1 + exp(- theta)))

qq <- ifelse(theta < 0, 1 / (1 + exp(theta)),

exp(- theta) / (1 + exp(- theta)))

apparently R function auglag wants the jacobian of

the inequality constraints to be a matrix

in this case since g returns a vector of length 1

this function should return a 1 by p matrix

result <- ifelse(y == 1, qq, - pp) %*% modmat

dimnames(result) <- NULL

result

}

alpha.test <- 0.05

beta.test <- rep(0, p)

library(numDeriv)

dg(beta.test, alpha.test)

[,1] [,2]

[1,] 0 100

grad(g, beta.test, alpha = alpha.test)

[1] 0 100

all.equal(dg(beta.test, alpha.test),

rbind(grad(g, beta.test, alpha = alpha.test)))

[1] TRUE

for (j in 1:5) {

beta.test <- rnorm(p) * 0.2

print(all.equal(dg(beta.test, alpha.test),

rbind(grad(g, beta.test, alpha = alpha.test))))

}

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

[1] TRUE

Everything looks good. Let's �nd con�dence limits.

6

library(alabama)

beta.start <- c(0, 0)

bounds <- rep(NA_real_, length(y))

for (i in seq(along = bounds)) {

aout <- auglag(beta.start, f, df, g, dg,

control.outer = list(trace = FALSE),

k = i, alpha = 0.05)

if (aout$convergence == 0)

bounds[i] <- aout$value

}

bounds

[1] 0.9185667 0.4303787 -0.2852351 -2.9440131 -2.9440330 -0.2852351

[7] 0.4303787 0.9185668

Fix up bounds so they correspond to what we are interested in.

bounds <- ifelse(y == 1, bounds, - bounds)

bounds

[1] -0.9185667 -0.4303787 0.2852351 2.9440131 -2.9440330 -0.2852351

[7] 0.4303787 0.9185668

bounds.lower.theta <- ifelse(y == 1, bounds, -Inf)

bounds.upper.theta <- ifelse(y == 1, Inf, bounds)

data.frame(x, y, lower = bounds.lower.theta, upper = bounds.upper.theta)

x y lower upper

1 10 0 -Inf -0.9185667

2 20 0 -Inf -0.4303787

3 30 0 -Inf 0.2852351

4 40 0 -Inf 2.9440131

5 60 1 -2.9440330 Inf

6 70 1 -0.2852351 Inf

7 80 1 0.4303787 Inf

8 90 1 0.9185668 Inf

bounds.lower.p <- 1 / (1 + exp(- bounds.lower.theta))

bounds.upper.p <- 1 / (1 + exp(- bounds.upper.theta))

data.frame(x, y, lower = bounds.lower.p, upper = bounds.upper.p)

x y lower upper

1 10 0 0.00000000 0.2852500

2 20 0 0.00000000 0.3940359

3 30 0 0.00000000 0.5708292

4 40 0 0.00000000 0.9499798

5 60 1 0.05001929 1.0000000

7

6 70 1 0.42917079 1.0000000

7 80 1 0.60596409 1.0000000

8 90 1 0.71474999 1.0000000

Now make the plot.

par(mar = c(4, 4, 0, 0) + 0.1)

plot(x, y, axes = FALSE, type = "n",

xlab = expression(x), ylab = expression(mu(x)))

segments(x, bounds.lower.p, x, bounds.upper.p, lwd = 2)

box()

axis(side = 1)

axis(side = 2)

points(x, y, pch = 21, bg = "white")

Our Figure 1 is Figure 2 in Eck and Geyer (submitted). It is also the second
�gure in the talk (�rst is scatterplot of data).

2 Support of Submodel Canonical Statistic

The course notes Geyer (2016) show how to visualize the support of the sub-
model canonical statistic MT y where M is the model matrix of an exponential
family GLM and y is the response vector. We dump that in here to get that
�gure. There is a lot of unnecessary blather here that is copied verbatim from
those notes. We apologize for that but don't want to edit it for this. We only
want the �gure (Figure 4 below) for the talk.

We will use the theory of Barndor�-Nielsen completions of exponential fam-
ilies from Geyer (2009).

2.1 Support Points

That theory tells us that we must look at the set of all possible values of the
canonical statistic MT y where M is the model matrix and y is the response
vector. For the model, M has two columns: the �rst column is all ones (the
�intercept� column) and the second column is x. So let's �nd that set. There
are 2n possible values where n is the dimension of the response vector because
each component of y can be either zero or one. The following code makes all of
those vectors.

yy <- NULL

n <- length(y)

for (i in 1:n) {

j <- 2^(i - 1)

k <- 2^n / j / 2

yy <- cbind(rep(rep(0:1, each = j), times = k), yy)

}

8

x

µ(
x)

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ●

● ● ● ●

Figure 1: One-sided 95% con�dence intervals for mean value parameters. Bars
are the intervals. Vertical axis is the probability of observing response value one
when the predictor value is x. Solid dots are the observed data.

9

head(yy)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 0 0 0 0 0

[2,] 0 0 0 0 0 0 0 1

[3,] 0 0 0 0 0 0 1 0

[4,] 0 0 0 0 0 0 1 1

[5,] 0 0 0 0 0 1 0 0

[6,] 0 0 0 0 0 1 0 1

dim(yy)

[1] 256 8

For those who know how to count in binary, row i is i−1 expressed in binary.
Have you heard the joke: there are two kinds of people in this world, those who
divide everything into two kinds and those who don't? And its nerd version:
there are 10 kinds of people in this world, those who know binary and those
who don't?

For those who don't, the following code shows that every row of yy is di�er-
ent, every row contains only zeros and ones, and there are 2n rows.

fred <- apply(yy, 1, paste, collapse = "")

head(fred)

[1] "00000000" "00000001" "00000010" "00000011" "00000100" "00000101"

length(unique(fred)) == length(fred)

[1] TRUE

all(apply(yy, 1, function(x) all(x %in% 0:1)))

[1] TRUE

nrow(yy) == 2^n

[1] TRUE

But there are not so many distinct values of the submodel canonical statistic.

m <- cbind(1, x)

mtyy <- t(m) %*% t(yy)

t1 <- mtyy[1,]

t2 <- mtyy[2,]

t1.obs <- sum(y)

t2.obs <- sum(x * y)

10

Figure 2 shows these possible values of the submodel canonical statistic.
And now we are stuck. Figure 2 seems to show that the observed data vector

is an extreme value, but we cannot easily �gure out the direction of recession.

2.2 Tangent Vectors

Vectors Y (ω)− y, where y is the observed value of the canonical statistic vector
and Y (ω) are other possible values of the canonical statistic vector, are called
tangent vectors (Geyer, 2009, explains the reason they have this name). If

V = { vi : i ∈ I }

is the set of tangent vectors, then the set of a nonnegative combinations of them,
vectors of the form ∑

i∈A
aivi

where A is a �nite set and ai ≥ 0 for all i, is called the tangent cone. It is
denoted con(posT) in Geyer (2009).

Load library rcdd

library(rcdd)

If you want correct answers, use rational arithmetic.

See the Warnings sections added to help pages for

functions that do computational geometry.

Figure 3 shows the tangent vectors and tangent cone. The points in Figures 2
and 3 are the same except in Figure 3 they are moved so the one corresponding
to the observed value of the canonical statistic is the origin (0, 0). The gray area
is the tangent cone (set of all nonnegative combinations of tangent vectors).

We are interested in the case where a �nite subset of the tangent vectors
gives the same tangent cone, that is, when S is a �nite subset of T such that
con(posS) = con(posT). This is obviously the case, when the statistical model
has �nite support so T is �nite, as in logistic regression and log-linear models for
contingency tables with multinomial or product multinomial sampling. As we
shall see, it is also the case for Poisson regression with log link and for log-linear
models for contingency tables with Poisson sampling.

For generalized linear models (GLM) we do not need all the tangent vectors.
For the saturated model, tangent vectors Y (ω)− y such that Y (ω) and y di�er
only in one coordinate are enough to generate the whole tangent cone (Geyer,
2009, Section 3.11). Moreover, if Vsat is a set of vectors generating the tangent
cone for the saturated model, then

Vsub = {MT v : v ∈ Vsat }

is a set of vectors generating the tangent cone for the canonical a�ne submodel
with model matrix M (Geyer, 2009, Section 3.10).

11

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0

t1 = ∑y

t 2
=

∑
xy

●

Figure 2: Possible values of the submodel canonical statistic vector MT y for
the data shown in Figure 1. Solid dot is the observed value of the submodel
canonical statistic vector.

12

t1 − t1
obs

t 2
−

t 2ob
s

−4 −2 0 2 4

−
30

0
−

20
0

−
10

0
0

10
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3: Tangent vectors and tangent cone for data shown in Figure 1. Dots
are tangent vectors, gray region is tangent cone.

13

So now we need to learn how to �nd these tangent vectors for the saturated
model.

First consider logistic regression when y has Bernoulli components (zero-or-
one-valued). If the observed value of yi is 0, the only other possible value is 1,
so the vector ei, which has all coordinates equal to 0 except the i-th component,
which is 1, is a tangent vector. Similar reasoning says −ei is a tangent vector if
yi = 1.

Second consider logistic regression when y has binomial components. Now
we have not only components yi of the response vector but sample sizes ni that
go with them. We see that if yi = 0, then ei is a tangent vector (as before), and
if yi = ni, then −ei is a tangent vector (as before), but now we also have the
case 0 < yi < ni in which case it is possible to change the i-th coordinate either
up or down, so both ei and −ei are tangent vectors.

Third consider Poisson regression with log link. Just like in the binomial case
we have ei is a tangent vector when yi = 0, and both ei and −ei are tangent
vectors when 0 < yi < ∞. Since there is no upper bound to the range of a
Poisson random variable, there is no case where only −ei is a tangent vector.

2.3 Calculating the Linearity

We now want to calculate a GDOR, but that calculation proceeds in two steps
in the algorithm of Geyer (2009). First we need to �nd the linearity of the
tangent cone (Geyer, 2009, Section 3.12), which is the smallest vector subspace
contained in the tangent cone, although Geyer (2009) also (somewhat sloppily)
uses the same term for a set of vectors spanning this vector subspace.

If Vsub is a set of vectors generating the tangent cone for the canonical a�ne
submodel, then there is an R function linearity in the R package rcdd that
calculates

Lsub = { v ∈ Vsub : −v ∈ con(posVsub) }. (2)

This is the set of all the given tangent vectors that are in the linearity of the
tangent cone. They also span it, hence determine it.

If we use Lsub as de�ned in (2) to denote a set of tangent vectors. Then the
linearity considered as a vector space is denoted spanLsub.

The linearity is useful for three reasons. The hyperplane H de�ned that
supports the limiting conditional model (LCM), which is de�ned in Theorem 6
in Geyer (2009) and the discussion following it, can be expressed as H = y +
spanLsub. So the linearity tells us the support of the LCM. We also need to
know what the linearity is in order to calculate a GDOR. Finally, the linearity
tells whether the MLE exists or not. It exists if and only if Lsub 6= Vsub (Geyer,
2009, Theorem 4).

So let us calculate the linearity for our example, the data shown in Figure 1.
We follow Section 4.1 of Geyer (2008).

tanv <- m

tanv[y == 1,] <- (-tanv[y == 1,])

14

vrep <- makeV(rays = tanv)

lout <- linearity(d2q(vrep), rep = "V")

lout

integer(0)

MT ei is just the i-th row of M , so the rows of m are either tangent vectors
or −1 times tangent vectors. So we assign tanv to be m and then adjust the
signs. For rows of m such that corresponding component of y is equal to one,
we need to change the sign. So the second and third lines of the code chunk
above make tanv a matrix whose rows are the elements of Vsub. Then next
two lines are idiomatic usage of the R package rcdd. The result lout is an
integer vector giving the indices of the tangent vectors in the linearity, that is,
tanv[linearity,] is a basis for the linearity considered as a vector subspace.

Here the result is a vector of length zero, which says the empty set of vectors
spans the linearity, which means it is the trivial vector subspace {0} that has
only one point. We could actually see this in Figure 3, the gray area is a pointed
cone, so it contains only the trivial subspace.

So this tells us that the support of the LCM for this example contains only
one point. The MLE distribution is completely degenerate, concentrated at y.
The MLE distribution says the only data we could have observed is what we
did observe; no other data values were possible. Before anyone decides this is
weird, let me remind you this is only an estimate, and, as always, estimates
are not parameters. This degeneracy causes no problem so long as we don't
overinterpret it.

This complete degeneracy of the MLE distribution is what Agresti calls
�complete separation.�

2.4 Calculating Generic Directions of Recession

If Lsub 6= Vsub the MLE does not exist in the original model (OM), and we need
to calculate a GDOR. In this we follow Geyer (2009, Section 3.13). A vector η
in the parameter space is a GDOR if and only if

〈v, η〉 = 0, v ∈ Lsub (3a)

〈v, η〉 < 0, v ∈ Vsub \ Lsub (3b)

and we can �nd one such η by solving the following linear program

maximize

ε

subject to

ε ≤ 1

〈v, η〉 = 0, v ∈ Lsub

〈v, η〉 ≤ −ε, v ∈ Vsub \ Lsub

(4)

15

where η is a vector, ε is a scalar, and (η, ε) denotes a vector of length one more
than the length of η. This vector is the vector of variables of the linear program.
The η part of the solution is a generic direction of recession. The ε part does
not matter.

So we solve this linear program to calculate the GDOR, still following Sec-
tion 4.1 of Geyer (2008).

p <- ncol(tanv)

hrep <- cbind(0, 0, -tanv, -1)

hrep <- rbind(hrep, c(0, 1, rep(0, p), -1))

objv <- c(rep(0, p), 1)

pout <- lpcdd(d2q(hrep), d2q(objv), minimize = FALSE)

names(pout)

[1] "solution.type" "primal.solution" "dual.solution" "optimal.value"

pout$solution.type

[1] "Optimal"

gdor <- q2d(pout$primal.solution[1:p])

gdor

[1] -5.0 0.1

The code chunk above is not general. It assumes the linearity is trivial, as
in the particular example we are working on. More on this later.

So now we have a GDOR, we should put that on the plot, but we cannot.
The reason is that η is a vector in the parameter space (as we have been saying
over and over), but the space plotted in Figure 2 is the sample space for the
canonical statistic vector. (I tried. There is no way to draw η into Figure 2.)
What we can do is add the hyperplane

H = {x ∈ R2 : 〈x, η〉 = 〈y, η〉 } (5)

See Figure 4. The fact that the only possible value of the canonical statistic
vector that is on H is the observed value y again tells us that the LCM is
completely degenerate, concentrated at the observed value.

References

Agresti, A. (2013). Categorical Data Analysis, third edition. John Wiley &
Sons, Hoboken, NJ.

Eck, D. J., and Geyer, C. J. Computationally e�cient likelihood inference in
exponential families when the maximum likelihood estimator does not exist.
Submitted to Annals of Statistics. https://arxiv.org/abs/1803.11240

16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0

t1 = ∑y

t 2
=

∑
xy

●

Figure 4: Possible values of the submodel canonical statistic vector MT y for
the data shown in Figure 1. Solid dot is the observed value of the submodel
canonical statistic vector. Solid line is the hyperplane (5) on which the LCM is
concentrated.

17

Geyer, C. J. (2008). Supporting theory and data analysis for �Likelihood in-
ference in exponential families and directions of recession�. Technical Report
672, School of Statistics, University of Minnesota. http:www.stat.umn.edu/
geyer/gdor/phaseTR.pdf.

Geyer, C. J. (2009). Likelihood inference in exponential families and directions
of recession. Electronic Journal of Statistics, 3, 259�289.

Geyer, C. J. (2016). Two Examples of Agresti. Class notes, PDF http://

www.stat.umn.edu/geyer/8931expfam/infinity.pdf, knitr source http:

//www.stat.umn.edu/geyer/8931expfam/infinity.Rnw

Geyer, C. J. (2018). Fast Valid Statistical Inference when the Maximum
Likelihood Estimate Does Not Exist in an Exponential Family Model and
the "Usual Asymptotics" are Bogus. Talk at Mini-Conference to Celebrate
Elizabeth Thompson's Contributions to Statistics, Genetics and the Univer-
sity of Washington, June 19, 2018. http://users.stat.umn.edu/~geyer/

ElizabethFest/

18

