
EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

We will be using R for the computing in this course. It is freely available for all platforms at
www.r-project.org. We will also use the packages lattice, latticeExtra, nlme, reshape
and possibly a few others. I’ll try to cover everything you might need but if you’ve never
used it before be prepared to take some extra time to get up to speed.

Workflow recommendations: My preferred workflow is to have a R source code file
for each project I work on, and open it in R in another window; I can then record which
commands I want to remember or reuse and easily run them using a keyboard shortcut
(differs by platform). I never save my “workspace” when closing R; this refers to everything
that is in R’s memory at the time. I have found that it is easy to depend on elements that
have been saved from previous sessions without realizing it or remembering how they were
created. By storing all the commands I use to accomplish a task in the separate R source
code file, I know I can always recreate my workspace when I later return to the project.

Loading packages: Most of the packages we will use are installed by default; however,
there may be packages we will need that are not, such as the latticeExtra package. On
some platforms you can install packages through menus; on all platforms you can do it using
the install.packages command.

> install.packages("latticeExtra")

Getting help: Getting help is easy if you know the name of the command you want help
for. For example, for help with the lm command, type one of these.

> ?lm

> help("lm")

If you don’t know the name of the command, here are two ways to start your search. First,
you canbrowse the help pages with help.start.

> help.start()

Or, to do a more general web search, start at rseek.org. This is a custom Google search
which limits itself to pages with information about R.

Basic R Overview

Arithmetic, storing results as an object

> 1 + 1

[1] 2

> a <- 1 + 1

> b <- 3

> a + b

[1] 5

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

Basic R Object Types: boolean, character, factor, numeric, list (any can be extended);
also, R is vector-Based: c, [], $

> a <- c(FALSE, TRUE, FALSE)

> a

[1] FALSE TRUE FALSE

> b <- c("aa", "bb", "cc")

> b

[1] "aa" "bb" "cc"

> c <- 1:3

> c

[1] 1 2 3

> d <- c(3.5, 4.6, 5.7)

> d[1]

[1] 3.5

> d[c(1, 3)]

[1] 3.5 5.7

> c + d

[1] 4.5 6.6 8.7

> my.list <- list(a = a, b = b, c = c, cd = c + d)

> my.list

$a

[1] FALSE TRUE FALSE

$b

[1] "aa" "bb" "cc"

$c

[1] 1 2 3

$cd

[1] 4.5 6.6 8.7

> names(my.list)

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

[1] "a" "b" "c" "cd"

> my.list$a

[1] FALSE TRUE FALSE

> my.list["a"]

$a

[1] FALSE TRUE FALSE

> my.list[["a"]]

[1] FALSE TRUE FALSE

> my.list[c(1, 4)]

$a

[1] FALSE TRUE FALSE

$cd

[1] 4.5 6.6 8.7

Factors

> aa <- c("a1", "a2", "a10")

> aaf <- factor(aa)

> aaf

[1] a1 a2 a10

Levels: a1 a10 a2

> levels(aaf)

[1] "a1" "a10" "a2"

> levels(aaf) <- c(1, 10, 2)

> as.numeric(aaf)

[1] 1 3 2

> as.numeric(as.character(aaf))

[1] 1 2 10

> factor(aa, levels = c("a1", "a2", "a10"))

[1] a1 a2 a10

Levels: a1 a2 a10

> factor(aa, levels = c("a1", "a2", "a10"), labels = c(1, 2, 10))

[1] 1 2 10

Levels: 1 2 10

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

Data Frames lists, with each object required to have the same length

> df <- data.frame(a = a, b = b, c = c, cd = c + d)

> str(df)

'data.frame': 3 obs. of 4 variables:

$ a : logi FALSE TRUE FALSE

$ b : Factor w/ 3 levels "aa","bb","cc": 1 2 3

$ c : int 1 2 3

$ cd: num 4.5 6.6 8.7

> df <- data.frame(a = a, b = b, c = c, cd = c + d, stringsAsFactors = FALSE)

> str(df)

'data.frame': 3 obs. of 4 variables:

$ a : logi FALSE TRUE FALSE

$ b : chr "aa" "bb" "cc"

$ c : int 1 2 3

$ cd: num 4.5 6.6 8.7

> df$a

[1] FALSE TRUE FALSE

> df[1:2, 1:2]

a b

1 FALSE aa

2 TRUE bb

Functions R functions are also objects

> my.function <- function(a, b) {

+ (a + b)/2

+ }

> my.function

function (a, b)

{

(a + b)/2

}

> my.function(3, 4)

[1] 3.5

> my.function(c(3, 13), c(4, 14))

[1] 3.5 13.5

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

Reading in data and looking at it

The most common way to read in data is with read.table; there are also a variants with
defaults suitable for csv files (read.csv) and tab-delimited files (read.delim). Files can be
read either locally or from a url. Here I read in the Big Mice data set referenced in our text,
and check the structure, the dimensions, the first few rows, and the last few rows. This is
always a good idea to make sure you’ve read it in correctly. Links to other data sets from
this book can be found at http://rem.ph.ucla.edu/rob/mld/data.html.

> d <- read.delim("http://rem.ph.ucla.edu/rob/mld/data/tabdelimiteddata/bigmice.txt")

> str(d)

'data.frame': 735 obs. of 6 variables:

$ group : int 1 1 1 1 1 1 1 1 1 1 ...

$ id : int 1 1 1 1 1 1 1 1 1 1 ...

$ weight: int 120 NA NA 138 NA NA 258 NA NA 408 ...

$ day : int 0 1 2 3 4 5 6 7 8 9 ...

$ dday : int 0 1 2 3 4 5 6 7 8 9 ...

$ cday : int -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 ...

> dim(d)

[1] 735 6

> head(d)

group id weight day dday cday

1 1 1 120 0 0 -10

2 1 1 NA 1 1 -9

3 1 1 NA 2 2 -8

4 1 1 138 3 3 -7

5 1 1 NA 4 4 -6

6 1 1 NA 5 5 -5

> tail(d)

group id weight day dday cday

730 4 35 913 15 15 5

731 4 35 959 16 16 6

732 4 35 1001 17 17 7

733 4 35 1002 18 18 8

734 4 35 1082 19 19 9

735 4 35 1105 20 20 10

Data read in using these commands are stored in data frames, which are matrices where
each column represents a variable and each row an observation of those variables. Rows and
columns can be accessed using the [] or $ operators.

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

> d[1:3, 1:3]

group id weight

1 1 1 120

2 1 1 NA

3 1 1 NA

> head(d[, 3])

[1] 120 NA NA 138 NA NA

> head(d$weight)

[1] 120 NA NA 138 NA NA

> d[2:4,]

group id weight day dday cday

2 1 1 NA 1 1 -9

3 1 1 NA 2 2 -8

4 1 1 138 3 3 -7

Note the use of the colon : to specify a range; specific values can also be specified using the
c command (which is short for combine).

> d[c(2, 4, 6),]

group id weight day dday cday

2 1 1 NA 1 1 -9

4 1 1 138 3 3 -7

6 1 1 NA 5 5 -5

Basic Plotting Commands

There are at least three distinct ways to make plots in R; with the built-in graphics, with the
lattice library, and with the ggplot library. I am most familiar with the built-in graphics
and the lattice library, and will try to demonstrate just using the lattice library to keep
things consistent.

The basic plotting command is xyplot; it requires a formula describing which variables to
plot and the name of the data frame containing those variables.

> library(lattice)

> p1 <- xyplot(weight ~ day, data = d)

> plot(p1)

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

day

w
ei

gh
t

200

400

600

800

1000

1200

0 5 10 15 20

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

● ● ●
●

●
● ●

●
●

● ● ● ● ● ● ●
●

●
● ●

●

● ●

●
●

●
●

●
● ●

● ●
●

●
● ● ●

●
● ●

● ●

To make a box and whiskers plot, use bwplot; we first make day into a categorical variable
using the factor command.

> p2 <- bwplot(weight ~ factor(day), data = d)

> plot(p2)

w
ei

gh
t

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 91011121314151617181920

● ● ●
●

●
●

●

●
● ●

●
● ●

●
● ● ●

● ● ●
●

● ●

●

●

●

●

●

●

●

●

●●
●

●

Modifying plots

Labels can be easily be changed or added to plots:

> p3 <- xyplot(weight ~ day, data = d, xlab = "Day", ylab = "Weight (mg)",

+ main = "Mouse Weights")

> plot(p3)

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

Mouse Weights

Day

W
ei

gh
t (

m
g)

200

400

600

800

1000

1200

0 5 10 15 20

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

● ● ●
●

●
● ●

●
●

● ● ● ● ● ● ●
●

● ● ●

●

● ●

●
●

●
●

●
● ●

● ●
●

●
● ● ●

●
● ●

● ●

To change other elements of the plot, like point color, type, and size, it’s best to use the theme
mechanism. The following code saves the standard theme, modifies the plotting symbol to
be black triangles of size 0.5.

> ltheme <- standard.theme("pdf")

> ltheme$plot.symbol$col <- "black"

> ltheme$plot.symbol$pch <- 2

> ltheme$plot.symbol$cex <- 0.5

The plot can then be updated before plotting.

> p3b <- update(p3, par.settings = ltheme)

> plot(p3b)

Mouse Weights

Day

W
ei

gh
t (

m
g)

200

400

600

800

1000

1200

0 5 10 15 20

To see elements of the theme, you can delve into it by using the names function and the $

operator.

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

> stheme <- standard.theme("pdf")

> names(stheme)

[1] "grid.pars" "fontsize" "background"

[4] "panel.background" "clip" "add.line"

[7] "add.text" "plot.polygon" "box.dot"

[10] "box.rectangle" "box.umbrella" "dot.line"

[13] "dot.symbol" "plot.line" "plot.symbol"

[16] "reference.line" "strip.background" "strip.shingle"

[19] "strip.border" "superpose.line" "superpose.symbol"

[22] "superpose.polygon" "regions" "shade.colors"

[25] "axis.line" "axis.text" "axis.components"

[28] "layout.heights" "layout.widths" "box.3d"

[31] "par.xlab.text" "par.ylab.text" "par.zlab.text"

[34] "par.main.text" "par.sub.text"

> str(stheme$plot.symbol)

List of 6

$ alpha: num 1

$ cex : num 0.8

$ col : chr "#0080ff"

$ font : num 1

$ pch : num 1

$ fill : chr "transparent"

Also try the show.settings() function to view current settings.

A theme can also be set as the default. Then NEW plots will be made using this theme,
that is, you’ll need to close your currently open plots first.

> lattice.options(default.theme = ltheme)

The latticeExtra has several themes prepared that you may prefer, including one that is
similar to the ggplot defaults. The theme is created with the ggplot2like function; some
additional options are also needed and are set with ggplot2like.opts.

> library(latticeExtra)

> lattice.options(default.theme = ggplot2like())

> lattice.options(ggplot2like.opts())

> plot(xyplot(weight ~ day, d))

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

day

w
ei

gh
t

200

400

600

800

1000

1200

0 5 10 15 20

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●
●

● ●
●

●
● ●

●
● ● ● ●

●
●

● ●

●

● ●

●
●

●

●

●
●

●

● ●
●

●
● ●

●
●

● ●

●
●

Reshaping data

Sometimes our data will not be in the format we need in order to plot and analyze it; it may
be in wide format, instead of long format. The reshape package is a nice way to convert
between the two. Here’s a data set I made up:

> d <- read.csv("http://www.stat.umn.edu/~arendahl/Teaching/EPSY8282/class/class02.csv")

> d

subject gender time0 time1 time2

1 1 M 9.659145 9.353645 8.439919

2 2 F 12.384359 12.082321 12.258120

3 3 M 10.244508 10.458735 9.886974

4 4 F 12.070143 12.874918 13.402598

5 5 M 14.211441 16.272405 16.508425

6 6 F 12.397092 12.595313 11.411346

To get the data in long format we“melt” it by distinguishing between identifier and measured
variables. (The first 8 rows of the result are shown.)

> library(reshape)

> dm <- melt(d, id.vars = 1:2, measure.vars = 3:5)

> head(dm, 8)

subject gender variable value

1 1 M time0 9.659145

2 2 F time0 12.384359

3 3 M time0 10.244508

4 4 F time0 12.070143

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

5 5 M time0 14.211441

6 6 F time0 12.397092

7 1 M time1 9.353645

8 2 F time1 12.082321

We can get it back into wide format by “casting” it. This uses a formula with the variables
to use as rows on the left and the variables to use as columns on the right. By default, it
expects the response variable to be named value.

> cast(dm, subject + gender ~ variable)

subject gender time0 time1 time2

1 1 M 9.659145 9.353645 8.439919

2 2 F 12.384359 12.082321 12.258120

3 3 M 10.244508 10.458735 9.886974

4 4 F 12.070143 12.874918 13.402598

5 5 M 14.211441 16.272405 16.508425

6 6 F 12.397092 12.595313 11.411346

> cast(dm, gender + subject ~ variable)

gender subject time0 time1 time2

1 F 2 12.384359 12.082321 12.258120

2 F 4 12.070143 12.874918 13.402598

3 F 6 12.397092 12.595313 11.411346

4 M 1 9.659145 9.353645 8.439919

5 M 3 10.244508 10.458735 9.886974

6 M 5 14.211441 16.272405 16.508425

> cast(dm, variable ~ gender + subject)

variable F_2 F_4 F_6 M_1 M_3 M_5

1 time0 12.38436 12.07014 12.39709 9.659145 10.244508 14.21144

2 time1 12.08232 12.87492 12.59531 9.353645 10.458735 16.27240

3 time2 12.25812 13.40260 11.41135 8.439919 9.886974 16.50842

It’s easy to aggregate over certain variables by simply not including them in the formula. A
function must be specified to use for the aggregation.

> cast(dm, gender ~ variable, fun.aggregate = mean)

gender time0 time1 time2

1 F 12.28386 12.51752 12.35735

2 M 11.37170 12.02826 11.61177

> cast(dm, variable ~ gender, fun.aggregate = mean)

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

variable F M

1 time0 12.28386 11.37170

2 time1 12.51752 12.02826

3 time2 12.35735 11.61177

> cast(dm, subject + gender ~ ., fun.aggregate = mean)

subject gender (all)

1 1 M 9.150903

2 2 F 12.241600

3 3 M 10.196739

4 4 F 12.782553

5 5 M 15.664090

6 6 F 12.134583

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

More on plotting

I’ll use this made-up data set to briefly outline three of the things the lattice library makes
easy; adding lines to a plot, dividing a plot by a given variable, and displaying points similarly
within a plot based on a given variable.

> dm$subject <- factor(dm$subject)

> plot(xyplot(value ~ variable, data = dm))

variable

va
lu

e

8

10

12

14

16

time0 time1 time2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

> plot(xyplot(value ~ variable, group = subject, data = dm))

variable

va
lu

e

8

10

12

14

16

time0 time1 time2

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

> plot(xyplot(value ~ variable, group = subject, data = dm, type = c("p",

+ "l")))

variable

va
lu

e

8

10

12

14

16

time0 time1 time2

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

> plot(xyplot(value ~ variable, group = gender, data = dm, type = c("p",

+ "a")))

variable

va
lu

e

8

10

12

14

16

time0 time1 time2

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

> plot(xyplot(value ~ variable, group = gender, data = dm, type = c("p",

+ "smooth")))

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

> px <- xyplot(value ~ variable, group = gender, data = dm, type = c("p",

+ "a"))

> px1 <- update(px, auto.key = TRUE)

> px1 <- update(px, auto.key = list(space = "right"))

> plot(px1)

variable

va
lu

e

8

10

12

14

16

time0 time1 time2

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

F
M

●

●

> px3 <- xyplot(value ~ variable | subject, dm, type = c("p", "l"))

> px3 <- xyplot(value ~ variable | subject, dm, type = c("p", "l"),

+ as.table = TRUE)

> plot(px3)

variable

va
lu

e 8
10
12
14
16

● ●
●

1

time0time1time2

● ● ●

2

● ●
●

3

time0time1time2

●
●

●

4

●

● ●

5

time0time1time2

8
10
12
14
16

● ●

●

6

EPSY8282 Class 2: R introduction: plotting and reshaping data Spring 2011

> px4 <- xyplot(value ~ variable | gender, type = c("p", "a"),

+ dm)

> plot(px4)

variable

va
lu

e

8

10

12

14

16

time0 time1 time2

●
●
●

●

●
●

●

●

●

F

time0 time1 time2

●

●

●

●

●

●

●

●

●

M

> px5 <- xyplot(value ~ variable | gender, group = subject, dm,

+ type = c("p", "l"))

> plot(px5)

variable

va
lu

e

8

10

12

14

16

time0 time1 time2

●
● ●●

●

●

●
●

●

F

time0 time1 time2

●
●

●

●
●

●

●

●
●

M

